Dynamics
As taught in: Fall 2004
Course Features
Course Highlights
Course Description
LEC # | TOPICS | LECTURE NOTES |
1 | Course Overview
Single Particle Dynamics: Linear and Angular Momentum Principles, Work-energy Principle | (PDF) |
2 | Examples of Single Particle Dynamics | (PDF) |
3 | Examples of Single Particle Dynamics (cont.) | (PDF) |
4 | Dynamics of Systems of Particles: Linear and Angular Momentum Principles, Work-energy Principle | (PDF) |
5 | Dynamics of Systems of Particles (cont.): Examples
Rigid Bodies: Degrees of Freedom | (PDF) |
6 | Translation and Rotation of Rigid Bodies
Existence of Angular Velocity Vector | (PDF) |
7 | Linear Superposition of Angular Velocities
Angular Velocity in 2D
Differentiation in Rotating Frames | (PDF) |
8 | Linear and Angular Momentum Principle for Rigid Bodies | (PDF) |
9 | Work-energy Principle for Rigid Bodies | (PDF) |
10 | Examples for Lecture 8 Topics | (PDF) |
11 | Examples for Lecture 9 Topics | (PDF) |
12 | Gyroscopes: Euler Angles, Spinning Top, Poinsot Plane, Energy Ellipsoid
Linear Stability of Stationary Gyroscope Motion | (PDF) |
13 | Generalized Coordinates, Constraints, Virtual Displacements | (PDF) |
14 | Exam 1 | |
15 | Generalized Coordinates, Constraints, Virtual Displacements (cont.) | (PDF) |
16 | Virtual Work, Generalized Force, Conservative Forces
Examples | (PDF) |
17 | D'Alembert's Principle
Extended Hamilton's Principle
Principle of Least Action | (PDF) |
18 | Examples for Session 16 Topics
Lagrange's Equation of Motion | (PDF) |
19 | Examples for Session 17 Topics | (PDF) |
20 | Lagrange Multipliers, Determining Holonomic Constraint Forces, Lagrange's Equation for Nonholonomic Systems, Examples | (PDF) |
21 | Stability of Conservative Systems
Dirichlet's Theorem
Example | (PDF) |
22 | Linearized Equations of Motion Near Equilibria of Holonomic Systems | (PDF) |
23 | Linearized Equations of Motion for Conservative Systems
Stability
Normal Modes
Mode Shapes
Natural Frequencies | (PDF) |
24 | Example for Session 23 Topics
Orthogonality of Modes Shapes
Principal Coordinates | (PDF) |
25 | Damped and Forced Vibrations Near Equilibria | (PDF) |
26 | Exam 2 |
No comments:
Post a Comment